Quantifying transport in crowded biochemical environments
نویسندگان
چکیده
Transport of cells and biochemical molecules often takes place in crowded, heterogeneous environments. As such, it is important we understand how to quantify crowded transport phenomena, and the possibilities of extracting transport coefficients from limited observations. We employ a volume-excluding random walk model on a square lattice where different fractions of lattice sites are filled with inert, immobile obstacles to investigate whether it is possible to estimate parameters associated with transport when crowding is present. By collecting and analysing data obtained on multiple spatial scales we demonstrate that commonly used models of motility within crowded environments can be used to reliably predict our random walk data. However, infeasibly large amounts of data are needed to estimate transport parameters, and quantitative estimates may differ depending on the spatial scale on which they are collected. We also demonstrate that in models of crowded environments there is a relatively large region of the parameter space within which it is difficult to distinguish between the “best fit” parameter values. This suggests commonly used descriptions of transport within crowded systems may not be appropriate, and that we should be careful in choosing models to represent the effects of crowding upon motility within biochemical systems.
منابع مشابه
Diffusion in crowded biological environments: applications of Brownian dynamics
Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mgml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions betwee...
متن کاملA Novel Method for Measuring the Quality of Temporal Integration in Public Transport Systems
Temporal coordination of services, as a crucial aspect of integration in public transport systems, has always been a big concern for transit planners and schedulers. One of the major issues in the way of coordinating transit services is the lack of a robust measure of effectiveness for assessing the quality of temporal coordination in public transport systems. Even though the network-wide summa...
متن کاملUnified regression model of binding equilibria in crowded environments
Molecular crowding is a critical feature distinguishing intracellular environments from idealized solution-based environments and is essential to understanding numerous biochemical reactions, from protein folding to signal transduction. Many biochemical reactions are dramatically altered by crowding, yet it is extremely difficult to predict how crowding will quantitatively affect any particular...
متن کاملSystematic integrated approach to quantifying preventive diagnostics in a “smart” transport system
One of the main tasks facing all European countries for the next few years is the creation of the most dynamically organized transport sector. The constant passenger and freight traffic lead to congestions and pollutions at the transport highways, having negative impact on a person. Thus, introduction of new technologies, addressing the interrelated problems of optimizing transport flows and im...
متن کاملReaction kinetics in intracellular environments with macromolecular crowding: simulations and rate laws.
We review recent evidence illustrating the fundamental difference between cytoplasmic and test tube biochemical kinetics and thermodynamics, and showing the breakdown of the law of mass action and power-law approximation in in vivo conditions. Simulations of biochemical reactions in non-homogeneous media show that as a result of anomalous diffusion and mixing of the biochemical species, reactio...
متن کامل